package main import ( "AOC2022/helper" "fmt" "strconv" "strings" ) type State struct { currentRessources [4]int currentProduction [4]int runtime int } type Blueprint struct { oreRoboterCost int clayRoboterCost int obsidianRobototerCost [2]int geodeRoboterCost [2]int } func main() { //args := os.Args[1:] lines := helper.ReadTextFile("day19/input") highestGeode := make([]int, len(lines)) for i, line := range lines { blueprint := getBluePrint(line) startStates := []State{State{[4]int{0, 0, 0, 0}, [4]int{1, 0, 0, 0}, 0}} fastestTime := getFastestTimeToElementN(blueprint, []State{State{[4]int{0, 0, 0, 0}, [4]int{1, 0, 0, 0}, 0}}, 2) startStates = getAllPossibleCombinationsWithFastestTime(blueprint, []State{State{[4]int{0, 0, 0, 0}, [4]int{1, 0, 0, 0}, 0}}, 2, fastestTime) tmpStates := getAllPossibleCombinationsWithFastestTime(blueprint, []State{State{[4]int{0, 0, 0, 0}, [4]int{1, 0, 0, 0}, 0}}, 2, fastestTime) fastestTime = getFastestTimeToElementN(blueprint, tmpStates, 3) startStates = getAllPossibleCombinationsWithFastestTime(blueprint, startStates, 3, fastestTime) highestGeode[i] = getHighestGeode(blueprint, startStates) } sum := 0 for i, score := range highestGeode { sum += (i + 1) * score } fmt.Println(sum) } func getHighestGeode(blueprint Blueprint, startStates []State) int { activeStates := startStates endStates := []State{} for len(activeStates) > 0 { stepHighestGeode(&activeStates, &endStates, &blueprint) } highestgeode := 0 for _, state := range endStates { if state.currentRessources[3] > highestgeode && state.runtime < 25 { highestgeode = state.currentRessources[3] } } return highestgeode } func getFastestTimeToElementN(blueprint Blueprint, startStates []State, untilElementN int) int { activeStates := startStates fastestTimeToObsidianState := State{[4]int{0, 0, 0, 0}, [4]int{1, 0, 0, 0}, 26} for len(activeStates) > 0 { step(&activeStates, &fastestTimeToObsidianState, untilElementN, &blueprint) } return fastestTimeToObsidianState.runtime } func getAllPossibleCombinationsWithFastestTime(blueprint Blueprint, startStates []State, untilElementN int, fastestTime int) []State { activeStates := startStates fastestTimeToObsidianState := map[[8]int]State{} for len(activeStates) > 0 { stepFindAllFastestTime(&activeStates, &fastestTimeToObsidianState, untilElementN, fastestTime, &blueprint) } returnStates := []State{} for _, val := range fastestTimeToObsidianState { returnStates = append(returnStates, val) } return returnStates } func step(activeStates *[]State, fastestTImeToObsidian *State, untilElementN int, blueprint *Blueprint) { activeStates, newTmpStates := generatePossibleTmpStates(activeStates, blueprint) for _, tmpState := range newTmpStates { if tmpState.currentProduction[untilElementN] > 0 && (*fastestTImeToObsidian).runtime > tmpState.runtime { *fastestTImeToObsidian = tmpState } if tmpState.currentProduction[untilElementN] == 0 && tmpState.runtime < (*fastestTImeToObsidian).runtime { *activeStates = append(*activeStates, tmpState) } } } func stepHighestGeode(activeStates *[]State, endStates *[]State, blueprint *Blueprint) { activeStates, newTmpStates := generatePossibleTmpStates(activeStates, blueprint) for _, tmpState := range newTmpStates { if tmpState.runtime < 24 { *activeStates = append(*activeStates, tmpState) } else { *endStates = append(*endStates, tmpState) } } } func stepFindAllFastestTime(activeStates *[]State, fastestTImeStates *map[[8]int]State, untilElementN int, fastestTime int, blueprint *Blueprint) { activeStates, newTmpStates := generatePossibleTmpStates(activeStates, blueprint) for _, tmpState := range newTmpStates { if tmpState.currentProduction[untilElementN] > 0 && fastestTime >= tmpState.runtime { identifier := [8]int{} copy(identifier[:], append(tmpState.currentRessources[:], tmpState.currentProduction[:]...)[:8]) (*fastestTImeStates)[identifier] = tmpState } if tmpState.currentProduction[untilElementN] == 0 && tmpState.runtime < fastestTime { *activeStates = append(*activeStates, tmpState) } } } func generatePossibleTmpStates(activeStates *[]State, blueprint *Blueprint) (*[]State, []State) { activeState := (*activeStates)[len(*activeStates)-1] *activeStates = (*activeStates)[:len(*activeStates)-1] possibleProductions := activeState.getPossibleProductions(blueprint) newTmpStates := []State{} for i := -1; i < len(possibleProductions); i++ { if i == -1 || possibleProductions[i] == 1 { tmpState := activeState tmpState.produceRessources() tmpState.produceRoboter(blueprint, i) tmpState.runtime++ newTmpStates = append(newTmpStates, tmpState) } } return activeStates, newTmpStates } func (state *State) produceRoboter(blueprint *Blueprint, roboter int) { switch roboter { case 0: state.currentProduction[0]++ state.currentRessources[0] -= blueprint.oreRoboterCost case 1: state.currentProduction[1]++ state.currentRessources[0] -= blueprint.clayRoboterCost case 2: state.currentProduction[2]++ state.currentRessources[0] -= blueprint.obsidianRobototerCost[0] state.currentRessources[1] -= blueprint.obsidianRobototerCost[1] case 3: state.currentProduction[3]++ state.currentRessources[0] -= blueprint.geodeRoboterCost[0] state.currentRessources[2] -= blueprint.geodeRoboterCost[1] default: } } func (state *State) produceRessources() { for i := 0; i < 4; i++ { state.currentRessources[i] += state.currentProduction[i] } } func (state State) getPossibleProductions(blueprint *Blueprint) [4]int { possibleProductions := [4]int{0, 0, 0, 0} if state.currentRessources[0] >= blueprint.oreRoboterCost { possibleProductions[0] = 1 } if state.currentRessources[0] >= blueprint.clayRoboterCost { possibleProductions[1] = 1 } if state.currentRessources[0] >= blueprint.obsidianRobototerCost[0] && state.currentRessources[1] >= blueprint.obsidianRobototerCost[1] { possibleProductions[2] = 1 } if state.currentRessources[0] >= blueprint.geodeRoboterCost[0] && state.currentRessources[2] >= blueprint.geodeRoboterCost[1] { possibleProductions[3] = 1 } return possibleProductions } func getBluePrint(line string) Blueprint { productionCostStrings := strings.Split(strings.Split(line, ":")[1], ". ") oreCostString := strings.ReplaceAll(productionCostStrings[0], " ore", "")[18:] oreCost, _ := strconv.Atoi(oreCostString) clayCostString := strings.ReplaceAll(productionCostStrings[1], " ore", "")[22:] claycost, _ := strconv.Atoi(clayCostString) obsidiancostString := strings.ReplaceAll(productionCostStrings[2], "ore and ", "")[26:] obsidianCost := helper.StringSliceToIntSlice(strings.Split(obsidiancostString[:len(obsidiancostString)-5], " ")) geodeCostString := strings.ReplaceAll(productionCostStrings[3], "ore and ", "")[23:] geodeCost := helper.StringSliceToIntSlice(strings.Split(geodeCostString[:len(geodeCostString)-10], " ")) return Blueprint{oreCost, claycost, [2]int{obsidianCost[0], obsidianCost[1]}, [2]int{geodeCost[0], geodeCost[1]}} }