AoC2019/day7.hs

126 lines
4.7 KiB
Haskell
Raw Normal View History

2019-12-07 08:40:38 +01:00
import Data.List.Split
import Data.Char as Char
import Data.List as List
main = do
software <- getList <$> getContents
--let output = operation state state 0 input []
let combs = getComb [4,3,2,1,0]
let output = List.maximum ( map (\x-> calcthruster software x) combs )
-- let output = calcthruster software [4,3,2,1,0]
putStrLn (show output)
getList :: String -> [Int]
getList = map read . splitOn ","
getComb :: [Int] -> [[Int]]
getComb array = filter ((5==).length.(List.nub)) $ mapM (const array) [1..5]
calcthruster :: [Int] -> [Int] -> Int
calcthruster software (p1:p2:p3:p4:p5:_) = do
let outputA = operation software software 0 [p1, 0] []
let outputB = operation software software 0 [p2, last outputA] []
let outputC = operation software software 0 [p3, last outputB] []
let outputD = operation software software 0 [p4, last outputC] []
let outputE = operation software software 0 [p5, last outputD] []
last outputE
operation :: [Int] -> [Int] -> Int -> [Int] -> [Int] -> [Int]
operation (99:_) state index input output =
output
operation (op:x:y:z:_) state index input output
| last (digits op) == 1 = do
let newindex = index + 4
let newstate = add (fillup (revertdigs op) 5) x y z state
operation (drop newindex newstate) newstate newindex input output
| last (digits op) == 2 = do
let newindex = index + 4
let newstate = mult (fillup (revertdigs op) 5) x y z state
operation (drop newindex newstate) newstate newindex input output
| last (digits op) == 3 = do
let newindex = index + 2
let newstate = put (fillup (revertdigs op) 3) x (head input) state
let newinput = drop 1 input
operation (drop newindex newstate) newstate newindex newinput output
| last (digits op) == 4 = do
let newindex = index + 2
let newoutput = out (fillup (revertdigs op) 3) output x state
let newinput = drop 1 input
operation (drop newindex state) state newindex input newoutput
| (last (digits op) == 5 ) = do
let newindex = jumpif (fillup (revertdigs op) 4) x y index state
operation (drop newindex state) state newindex input output
| (last (digits op) == 6 ) = do
let newindex = jumpifnot (fillup (revertdigs op) 4) x y index state
operation (drop newindex state) state newindex input output
| (last (digits op) == 7 ) = do
let newindex = index + 4
let newstate = lessthan (fillup (revertdigs op) 5) x y z state
operation (drop newindex newstate) newstate newindex input output
| (last (digits op) == 8 ) = do
let newindex = index + 4
let newstate = equal (fillup (revertdigs op) 5) x y z state
operation (drop newindex newstate) newstate newindex input output
add :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
add (op1:op2:m1:m2:m3:_) p1 p2 p3 state =
Main.insert state sum p3
where
sum = (getValue m1 p1 state) + (getValue m2 p2 state)
mult :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
mult (op1:op2:m1:m2:m3:_) p1 p2 p3 state =
Main.insert state sum p3
where
sum = (getValue m1 p1 state) * (getValue m2 p2 state)
put :: [Int] -> Int -> Int -> [Int] -> [Int]
put(op1:op2:m1:_) p1 input state =
Main.insert state input p1
out :: [Int] -> [Int] -> Int -> [Int] -> [Int]
out (op1:op2:m1:_) output p1 state =
output ++ [(getValue m1 p1 state)]
jumpif :: [Int] -> Int -> Int -> Int -> [Int] -> Int
jumpif (op1:op2:m1:m2:_) p1 p2 index state
| (getValue m1 p1 state) /= 0 = getValue m2 p2 state
| otherwise = index + 3
jumpifnot :: [Int] -> Int -> Int -> Int -> [Int] -> Int
jumpifnot (op1:op2:m1:m2:_) p1 p2 index state
| (getValue m1 p1 state) == 0 = getValue m2 p2 state
| otherwise = index + 3
lessthan :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 state
| (getValue m1 p1 state) < (getValue m2 p2 state) = Main.insert state 1 p3
| otherwise = Main.insert state 0 p3
equal :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
equal (op1:op2:m1:m2:m3:_) p1 p2 p3 state
| (getValue m1 p1 state) == (getValue m2 p2 state) = Main.insert state 1 p3
| otherwise = Main.insert state 0 p3
insert :: [Int] -> Int -> Int -> [Int]
insert xs value index = do
let split = splitAt index xs
(fst split)++ [value] ++ (drop 1 (snd split))
digits :: Int -> [Int]
digits = map Char.digitToInt . show
revertdigs :: Int -> [Int]
revertdigs 0 = []
revertdigs x = x `mod` 10 : revertdigs (x `div` 10)
fillup :: [Int] -> Int -> [Int]
fillup array x = array ++ (replicate (x - (length array)) 0)
getValue :: Int -> Int -> [Int] -> Int
getValue 0 index array = array !! index
getValue 1 index array = index