AoC2019/day9.hs

156 lines
6.4 KiB
Haskell
Raw Normal View History

2019-12-09 11:49:51 +01:00
import Data.List.Split
import Data.Char as Char
import Data.List as List
import Data.Either as Either
import Debug.Trace as Trace
main = do
software <- getList <$> getContents
let amp = Amplifier software 0 0 [] []
let amp2 = step amp [2]
putStrLn(show ( output amp2 ))
putStrLn ("HELLO")
data Amplifier = Amplifier{ state :: [Int]
,index :: Int
,base :: Int
,input :: [Int]
,output :: [Int]
} deriving Show
getList :: String -> [Int]
getList = map Prelude.read . splitOn ","
link :: Amplifier -> Amplifier -> Amplifier
link left calc
| null (output left) = Amplifier (state calc) (-1) (base calc) (input calc) (output calc)
| index left == -1 = Amplifier (state calc) (-1) (base calc) (input calc) (output calc)
| otherwise = step calc ([last $ output left])
step :: Amplifier -> [Int] -> Amplifier
step amp input = operation (drop (index amp) (state amp)) (state amp) (index amp) (base amp) input []
operation :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int] -> Amplifier
operation (99:_) state i base input output =
Amplifier state i base input output
operation (op:xs) state i base input output
| last (digits op) == 1 = do
let newindex = i + 4
let newstate = add (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| last (digits op) == 2 = do
let newindex = i + 4
let newstate = mult (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| last (digits op) == 3 = do
if (length input) == 0
then (Amplifier state i base input output)
else do
let newindex = i + 2
let newstate = put (fillup (revertdigs op) 3) (xs!!0) (head input) base state
let newinput = drop 1 input
operation (drop newindex newstate) (newstate) newindex base newinput output
| last (digits op) == 4 = do
let newindex = i + 2
let newoutput = out (fillup (revertdigs op) 3) output (xs!!0) base state
let newinput = drop 1 input
operation ((drop newindex state)) (state) newindex base input (newoutput)
| (last (digits op) == 5 ) = do
let newindex = jumpif (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
operation ((drop newindex state)) (state) newindex base input output
| (last (digits op) == 6 ) = do
let newindex = jumpifnot (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
operation ((drop newindex state)) (state) newindex base input output
| (last (digits op) == 7 ) = do
let newindex = i + 4
let newstate = lessthan (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| (last (digits op) == 8 ) = do
let newindex = i + 4
let newstate = equal (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| (last (digits op) == 9 ) = do
let newindex = i + 2
let fullop = (fillup (revertdigs op) 3)
let newbase = base + (getValue (fullop!!2) (xs!!0) base state)
(operation ((drop newindex state)) (state) newindex newbase input output)
add :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
add (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
Main.insert state sum (getIndex m3 p3 base)
where
sum = (getValue m1 p1 base state) + (getValue m2 p2 base state)
mult :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
mult (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
Main.insert state sum (getIndex m3 p3 base)
where
sum = (getValue m1 p1 base state) * (getValue m2 p2 base state)
put :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
put(op1:op2:m1:_) p1 input base state =
Main.insert state input (getIndex m1 p1 base)
out :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int]
out (op1:op2:m1:_) output p1 base state =
output ++ [(getValue m1 p1 base state)]
jumpif :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
jumpif (op1:op2:m1:m2:_) p1 p2 index base state
| (getValue m1 p1 base state) /= 0 = getValue m2 p2 base state
| otherwise = index + 3
jumpifnot :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
jumpifnot (op1:op2:m1:m2:_) p1 p2 index base state
| (getValue m1 p1 base state) == 0 = getValue m2 p2 base state
| otherwise = index + 3
lessthan :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
| (getValue m1 p1 base state) < (getValue m2 p2 base state) =
Main.insert state 1 (getIndex m3 p3 base)
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
equal :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
equal (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
| (getValue m1 p1 base state ) == (getValue m2 p2 base state ) =
Main.insert state 1 (getIndex m3 p3 base)
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
insert :: [Int] -> Int -> Int -> [Int]
insert xs value index
| index < length xs = do
let split = splitAt index xs
(fst split)++ [value] ++ (drop 1 (snd split))
| otherwise = do
let longState = xs ++ (replicate (index - length xs) 0)
let split = splitAt index longState
(fst split)++ [value] ++ (drop 1 (snd split))
read :: [Int] -> Int -> Int
read xs index
| index < length xs = xs!!index
| otherwise = 0
digits :: Int -> [Int]
digits = map Char.digitToInt . show
revertdigs :: Int -> [Int]
revertdigs 0 = []
revertdigs x = x `mod` 10 : revertdigs (x `div` 10)
fillup :: [Int] -> Int -> [Int]
fillup array x = array ++ (replicate (x - (length array)) 0)
getValue :: Int -> Int -> Int -> [Int] -> Int
getValue 0 p base array = Main.read array p
getValue 1 p base array = p
getValue 2 p base array = Main.read array (base + p)
getIndex :: Int -> Int -> Int -> Int
getIndex m p base
| m == 0 = p
| m == 2 = p + base