import Data.List.Split import Data.Char as Char import Data.List as List import Data.Either as Either main = do software <- getList <$> getContents let combs = getComb [5,6,7,8,9] --mapM putStrLn(map show combs) putStrLn(show $ List.maximum ( map (\x-> part2 ( prepareAmps x software) 0 ) combs )) -- let output = calcthruster software [4,3,2,1,0] data Amplifier = Amplifier{ state :: [Int] ,index :: Int ,input :: [Int] ,output :: [Int] } deriving Show getList :: String -> [Int] getList = map read . splitOn "," getComb :: [Int] -> [[Int]] getComb array = filter ((5==).length.(List.nub)) $ mapM (const array) [1..5] prepareAmps :: [Int] -> [Int] -> [Amplifier] prepareAmps (p1:p2:p3:p4:p5:_) software = do let a = step (Amplifier software 0 [] []) [p1] let b = step (Amplifier software 0 [] []) [p2] let c = step (Amplifier software 0 [] []) [p3] let d = step (Amplifier software 0 [] []) [p4] let e = step (Amplifier software 0 [] [0]) [p5] let e2 = Amplifier (state e) (index e) (input e) [0] [a,b,c,d,e2] part2 :: [Amplifier] -> Int -> Int part2 amps lastOuput = do let ampA = link (amps!!4) (amps!!0) let ampB = link (ampA) (amps!!1) let ampC = link (ampB) (amps!!2) let ampD = link (ampC) (amps!!3) let ampE = link (ampD) (amps!!4) if index ampE == -1 then lastOuput else part2 ([ampA,ampB,ampC,ampD,ampE]) (head(output ampE)) link :: Amplifier -> Amplifier -> Amplifier link left calc | null (output left) = Amplifier (state calc) (-1) (input calc) (output calc) | index left == -1 = Amplifier (state calc) (-1) (input calc) (output calc) | otherwise = step calc ([last $ output left]) step :: Amplifier -> [Int] -> Amplifier step amp input = operation (drop (index amp) (state amp)) (state amp) (index amp) input [] calcthrusters :: [Int] -> [Int] -> Int -> Int calcthrusters software (p1:p2:p3:p4:p5:_) start = do let outputA = operation software software 0 [p1, start] [] let outputB = operation software software 0 [p2, last $ output outputA] [] let outputC = operation software software 0 [p3, last $ output outputB] [] let outputD = operation software software 0 [p4, last $ output outputC] [] let outputE = operation software software 0 [p5, last $ output outputD] [] last $ output outputE operation :: [Int] -> [Int] -> Int -> [Int] -> [Int] -> Amplifier operation (99:_) state i input output = Amplifier state i input output operation (op:xs) state i input output | last (digits op) == 1 = do let newindex = i + 4 let newstate = add (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) state operation ((drop newindex newstate)) (newstate) newindex input output | last (digits op) == 2 = do let newindex = i + 4 let newstate = mult (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) state operation ((drop newindex newstate)) (newstate) newindex input output | last (digits op) == 3 = do if (length input) == 0 then (Amplifier state i input output) else do let newindex = i + 2 let newstate = put (fillup (revertdigs op) 3) (xs!!0) (head input) state let newinput = drop 1 input operation (drop newindex newstate) (newstate) newindex newinput output | last (digits op) == 4 = do let newindex = i + 2 let newoutput = out (fillup (revertdigs op) 3) output (xs!!0) state let newinput = drop 1 input operation ((drop newindex state)) (state) newindex input (newoutput) | (last (digits op) == 5 ) = do let newindex = jumpif (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i state operation ((drop newindex state)) (state) newindex input output | (last (digits op) == 6 ) = do let newindex = jumpifnot (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i state operation ((drop newindex state)) (state) newindex input output | (last (digits op) == 7 ) = do let newindex = i + 4 let newstate = lessthan (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) state operation ((drop newindex newstate)) (newstate) newindex input output | (last (digits op) == 8 ) = do let newindex = i + 4 let newstate = equal (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) state operation ((drop newindex newstate)) (newstate) newindex input output add :: [Int] -> Int -> Int -> Int -> [Int] -> [Int] add (op1:op2:m1:m2:m3:_) p1 p2 p3 state = Main.insert state sum p3 where sum = (getValue m1 p1 state) + (getValue m2 p2 state) mult :: [Int] -> Int -> Int -> Int -> [Int] -> [Int] mult (op1:op2:m1:m2:m3:_) p1 p2 p3 state = Main.insert state sum p3 where sum = (getValue m1 p1 state) * (getValue m2 p2 state) put :: [Int] -> Int -> Int -> [Int] -> [Int] put(op1:op2:m1:_) p1 input state = Main.insert state input p1 out :: [Int] -> [Int] -> Int -> [Int] -> [Int] out (op1:op2:m1:_) output p1 state = output ++ [(getValue m1 p1 state)] jumpif :: [Int] -> Int -> Int -> Int -> [Int] -> Int jumpif (op1:op2:m1:m2:_) p1 p2 index state | (getValue m1 p1 state) /= 0 = getValue m2 p2 state | otherwise = index + 3 jumpifnot :: [Int] -> Int -> Int -> Int -> [Int] -> Int jumpifnot (op1:op2:m1:m2:_) p1 p2 index state | (getValue m1 p1 state) == 0 = getValue m2 p2 state | otherwise = index + 3 lessthan :: [Int] -> Int -> Int -> Int -> [Int] -> [Int] lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 state | (getValue m1 p1 state) < (getValue m2 p2 state) = Main.insert state 1 p3 | otherwise = Main.insert state 0 p3 equal :: [Int] -> Int -> Int -> Int -> [Int] -> [Int] equal (op1:op2:m1:m2:m3:_) p1 p2 p3 state | (getValue m1 p1 state) == (getValue m2 p2 state) = Main.insert state 1 p3 | otherwise = Main.insert state 0 p3 insert :: [Int] -> Int -> Int -> [Int] insert xs value index = do let split = splitAt index xs (fst split)++ [value] ++ (drop 1 (snd split)) digits :: Int -> [Int] digits = map Char.digitToInt . show revertdigs :: Int -> [Int] revertdigs 0 = [] revertdigs x = x `mod` 10 : revertdigs (x `div` 10) fillup :: [Int] -> Int -> [Int] fillup array x = array ++ (replicate (x - (length array)) 0) getValue :: Int -> Int -> [Int] -> Int getValue 0 index array = array !! index getValue 1 index array = index