AoC2019/day11.hs

234 lines
9.7 KiB
Haskell

import Data.List.Split
import Data.Char as Char
import Data.List as List
import Data.Either as Either
import Debug.Trace as Trace
main = do
software <- getList <$> getContents
let brain = Amplifier software 0 0 [] [0]
let robot = Robot brain [] (0,0) 0
let result = runRobot robot
let endPoints = points result
let pointsNoColor = map(\(x,y) -> x) endPoints
let unique = nub pointsNoColor
let newEndPoints = map(\((a,b),c) -> ((a+25,b),c)) endPoints
let mapPoint = createMap newEndPoints [-50..50] []
--putStrLn(show $ length $ points result)
putStrLn(show $ newEndPoints)
mapM putStrLn( map show mapPoint)
--putStrLn(show (index (getBrain result)))
putStrLn ("HELLO")
data Amplifier = Amplifier{ state :: [Int]
,index :: Int
,base :: Int
,input :: [Int]
,output :: [Int]
} deriving Show
data Robot = Robot{ brain:: Amplifier
,points:: [((Int,Int),Int)]
,position:: (Int,Int)
,direction:: Int
} deriving Show
getBrain :: Robot -> Amplifier
getBrain (Robot brain points poisition direction) = brain
createMap ::[((Int,Int),Int)]-> [Int] -> [[Int]] -> [[Int]]
createMap points (x:xs) output
|length xs > 0 = do
let fPoints = filter(\((a,b),c) -> b == x) points
let row = foldl createRow [] fPoints
let newoutput = output ++ [(Trace.traceShowId(row))]
createMap points xs newoutput
|otherwise = output
createRow :: [Int] -> ((Int,Int),Int) -> [Int]
createRow row ((a,b),c) = Main.insert row c a
runRobot :: Robot -> Robot
runRobot (Robot brain points position direction) = do
let currentpoint = filter(\(p,c)-> p == position) $ points
let input =( if length currentpoint == 0
then 0
else snd $ head currentpoint)
let newBrain = (step brain [(input)])
if (output newBrain) == []
then Robot brain points position direction
else do
let outColor = (output (newBrain))!!0
let outMove = (output newBrain)!!1
let newPoints = ( (points \\ currentpoint) ++ [(position,outColor)])
let newDirection = changeDirection direction outMove
let newPos = move position newDirection
runRobot (Robot newBrain newPoints newPos newDirection)
stepRobot :: Robot -> Robot
stepRobot (Robot brain points position direction) = do
let currentpoint = filter(\(p,c)-> p == position) $ points
let input = if length currentpoint == 0
then 0
else snd $ head currentpoint
let newBrain = step brain [input]
let outColor = (output newBrain)!!0
let outMove = (output newBrain)!!1
let newPoints = (points) ++ [(position,outColor)]
let newDirection = changeDirection direction outMove
let newPos = move position newDirection
Robot newBrain newPoints newPos newDirection
move :: (Int,Int) -> Int -> (Int,Int)
move (x,y) direction
| direction == 0 = (x,y+1)
| direction == 1 = (x+1,y)
| direction == 2 = (x,y-1)
| direction == 3 = (x-1,y)
changeDirection :: Int -> Int -> Int
changeDirection direction input
| input == 0 = changeDirection' direction (-1)
| input == 1 = changeDirection' direction 1
changeDirection' :: Int -> Int -> Int
changeDirection' direction change
| direction + change < 0 = 3
| otherwise = mod (direction + change) 4
getList :: String -> [Int]
getList = map Prelude.read . splitOn ","
link :: Amplifier -> Amplifier -> Amplifier
link left calc
| null (output left) = Amplifier (state calc) (-1) (base calc) (input calc) (output calc)
| index left == -1 = Amplifier (state calc) (-1) (base calc) (input calc) (output calc)
| otherwise = step calc ([last $ output left])
step :: Amplifier -> [Int] -> Amplifier
step amp input = operation (drop (index amp) (state amp)) (state amp) (index amp) (base amp) input []
operation :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int] -> Amplifier
operation (99:_) state i base input output =
Amplifier state i base input []
operation (op:xs) state i base input output
| last (digits op) == 1 = do
let newindex = i + 4
let newstate = add (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| last (digits op) == 2 = do
let newindex = i + 4
let newstate = mult (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| last (digits op) == 3 = do
if (length input) == 0
then (Amplifier state i base input output)
else do
let newindex = i + 2
let newstate = put (fillup (revertdigs op) 3) (xs!!0) (head input) base state
let newinput = drop 1 input
operation (drop newindex newstate) (newstate) newindex base newinput output
| last (digits op) == 4 = do
let newindex = i + 2
let newoutput = out (fillup (revertdigs op) 3) output (xs!!0) base state
let newinput = drop 1 input
operation ((drop newindex state)) (state) newindex base input (newoutput)
| (last (digits op) == 5 ) = do
let newindex = jumpif (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
operation ((drop newindex state)) (state) newindex base input output
| (last (digits op) == 6 ) = do
let newindex = jumpifnot (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
operation ((drop newindex state)) (state) newindex base input output
| (last (digits op) == 7 ) = do
let newindex = i + 4
let newstate = lessthan (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| (last (digits op) == 8 ) = do
let newindex = i + 4
let newstate = equal (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| (last (digits op) == 9 ) = do
let newindex = i + 2
let fullop = (fillup (revertdigs op) 3)
let newbase = base + (getValue (fullop!!2) (xs!!0) base state)
(operation ((drop newindex state)) (state) newindex newbase input output)
add :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
add (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
Main.insert state sum (getIndex m3 p3 base)
where
sum = (getValue m1 p1 base state) + (getValue m2 p2 base state)
mult :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
mult (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
Main.insert state sum (getIndex m3 p3 base)
where
sum = (getValue m1 p1 base state) * (getValue m2 p2 base state)
put :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
put(op1:op2:m1:_) p1 input base state =
Main.insert state input (getIndex m1 p1 base)
out :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int]
out (op1:op2:m1:_) output p1 base state =
output ++ [(getValue m1 p1 base state)]
jumpif :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
jumpif (op1:op2:m1:m2:_) p1 p2 index base state
| (getValue m1 p1 base state) /= 0 = getValue m2 p2 base state
| otherwise = index + 3
jumpifnot :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
jumpifnot (op1:op2:m1:m2:_) p1 p2 index base state
| (getValue m1 p1 base state) == 0 = getValue m2 p2 base state
| otherwise = index + 3
lessthan :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
| (getValue m1 p1 base state) < (getValue m2 p2 base state) =
Main.insert state 1 (getIndex m3 p3 base)
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
equal :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
equal (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
| (getValue m1 p1 base state ) == (getValue m2 p2 base state ) =
Main.insert state 1 (getIndex m3 p3 base)
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
insert :: [Int] -> Int -> Int -> [Int]
insert xs value index
| index < length xs = do
let split = splitAt index xs
(fst split)++ [value] ++ (drop 1 (snd split))
| otherwise = do
let longState = xs ++ (replicate (index - length xs) 0)
let split = splitAt index longState
(fst split)++ [value] ++ (drop 1 (snd split))
read :: [Int] -> Int -> Int
read xs index
| index < length xs = xs!!index
| otherwise = 0
digits :: Int -> [Int]
digits = map Char.digitToInt . show
revertdigs :: Int -> [Int]
revertdigs 0 = []
revertdigs x = x `mod` 10 : revertdigs (x `div` 10)
fillup :: [Int] -> Int -> [Int]
fillup array x = array ++ (replicate (x - (length array)) 0)
getValue :: Int -> Int -> Int -> [Int] -> Int
getValue 0 p base array = Main.read array p
getValue 1 p base array = p
getValue 2 p base array = Main.read array (base + p)
getIndex :: Int -> Int -> Int -> Int
getIndex m p base
| m == 0 = p
| m == 2 = p + base