224 lines
9.0 KiB
Haskell
224 lines
9.0 KiB
Haskell
import Data.List.Split
|
|
import Data.Char as Char
|
|
import Data.List as List
|
|
import Data.Either as Either
|
|
import Debug.Trace as Trace
|
|
|
|
main = do
|
|
software <- getList <$> getContents
|
|
let brain = Amplifier software 0 0 [] [0]
|
|
let robot = Robot brain [] (0,0) 1
|
|
let resultRobots = (runRobot robot )
|
|
let winRobots = filter(\(Robot br pts pos dir) -> elem 2 (map(\(p,c) -> c) pts))resultRobots
|
|
let winRobotsLength = map(\(Robot br pts pos dir) -> length (filter(\(p,c) -> c == 1)pts))winRobots
|
|
putStrLn(show winRobotsLength)
|
|
putStrLn ("ELL")
|
|
|
|
data Amplifier = Amplifier{ state :: [Int]
|
|
,index :: Int
|
|
,base :: Int
|
|
,input :: [Int]
|
|
,output :: [Int]
|
|
} deriving Show
|
|
|
|
data Robot = Robot{ brain:: Amplifier
|
|
,points:: [((Int,Int),Int)]
|
|
,position:: (Int,Int)
|
|
,direction :: Int
|
|
} deriving Show
|
|
|
|
getBrain :: Robot -> Amplifier
|
|
getBrain (Robot brain points poisition direction) = brain
|
|
|
|
createMap ::[((Int,Int),Int)]-> [Int] -> [[Int]] -> [[Int]]
|
|
createMap points (y:ys) output
|
|
|length ys > 0 = do
|
|
let fPoints = filter(\((a,b),c) -> b ==y ) points
|
|
let row = foldl createRow [] fPoints
|
|
let newoutput = output ++ [(row)]
|
|
createMap points ys newoutput
|
|
|otherwise = output
|
|
|
|
createRow :: [Int] -> ((Int,Int),Int) -> [Int]
|
|
createRow row ((a,b),c) = Main.insert row c a
|
|
|
|
runRobot :: Robot -> [Robot]
|
|
runRobot robot
|
|
| (length move) == 0 = [robot]
|
|
| (length move) == 1 = do
|
|
let newRobot = stepRobot robot $ move!!0
|
|
runRobot newRobot
|
|
| otherwise = do
|
|
let newRobots = map(\mv -> stepRobot robot mv) move
|
|
foldl (++) [] $ map(\robot -> runRobot robot) newRobots
|
|
where move = getNextMove robot
|
|
|
|
stepRobot :: Robot -> Int -> Robot
|
|
stepRobot (Robot brain points position direction) newDirection = do
|
|
let newBrain = step brain [newDirection]
|
|
let statusResponse = head(output newBrain)
|
|
let newPos = move position newDirection
|
|
let newPoints = (points) ++ [(newPos,statusResponse)]
|
|
if statusResponse == 0 || statusResponse == 2
|
|
then Robot newBrain newPoints position newDirection
|
|
else Robot newBrain newPoints newPos newDirection
|
|
|
|
move :: (Int,Int) -> Int -> (Int,Int)
|
|
move (x,y) direction
|
|
| direction == 1 = (x,y+1)
|
|
| direction == 4 = (x+1,y)
|
|
| direction == 2 = (x,y-1)
|
|
| direction == 3 = (x-1,y)
|
|
|
|
getNextMove :: Robot -> [Int]
|
|
getNextMove (Robot brain points position direction)
|
|
|length points == 300 = []
|
|
|length points > 0 && (snd $ last points) == 2 = []
|
|
|otherwise = do
|
|
filterMoves (Robot brain points position direction) [1,2,3,4]
|
|
|
|
|
|
filterMoves :: Robot -> [Int] -> [Int]
|
|
filterMoves robot moves = filter(\x -> checkVisit robot x && checkWall robot x) moves
|
|
|
|
checkVisit :: Robot -> Int -> Bool
|
|
checkVisit (Robot brain points position direction) mv = do
|
|
let newPos = move position mv
|
|
let visits = map(\(pos,c) -> pos) points
|
|
notElem newPos visits
|
|
|
|
checkWall :: Robot -> Int -> Bool
|
|
checkWall (Robot brain points position direction) mv = do
|
|
let mvResult = head $ output (step brain [mv])
|
|
mvResult /= 0
|
|
|
|
getList :: String -> [Int]
|
|
getList = map Prelude.read . splitOn ","
|
|
|
|
step :: Amplifier -> [Int] -> Amplifier
|
|
step amp input = operation (drop (index amp) (state amp)) (state amp) (index amp) (base amp) input []
|
|
|
|
operation :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int] -> Amplifier
|
|
operation (99:_) state i base input output =
|
|
Amplifier state i base input []
|
|
operation (op:xs) state i base input output
|
|
| last (digits op) == 1 = do
|
|
let newindex = i + 4
|
|
let newstate = add (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
|
|
operation ((drop newindex newstate)) (newstate) newindex base input output
|
|
| last (digits op) == 2 = do
|
|
let newindex = i + 4
|
|
let newstate = mult (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
|
|
operation ((drop newindex newstate)) (newstate) newindex base input output
|
|
| last (digits op) == 3 = do
|
|
if (length input) == 0
|
|
then (Amplifier state i base input output)
|
|
else do
|
|
let newindex = i + 2
|
|
let newstate = put (fillup (revertdigs op) 3) (xs!!0) (head input) base state
|
|
let newinput = drop 1 input
|
|
operation (drop newindex newstate) (newstate) newindex base newinput output
|
|
| last (digits op) == 4 = do
|
|
let newindex = i + 2
|
|
let newoutput = out (fillup (revertdigs op) 3) output (xs!!0) base state
|
|
let newinput = drop 1 input
|
|
operation ((drop newindex state)) (state) newindex base input (newoutput)
|
|
| (last (digits op) == 5 ) = do
|
|
let newindex = jumpif (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
|
|
operation ((drop newindex state)) (state) newindex base input output
|
|
| (last (digits op) == 6 ) = do
|
|
let newindex = jumpifnot (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
|
|
operation ((drop newindex state)) (state) newindex base input output
|
|
| (last (digits op) == 7 ) = do
|
|
let newindex = i + 4
|
|
let newstate = lessthan (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
|
|
operation ((drop newindex newstate)) (newstate) newindex base input output
|
|
| (last (digits op) == 8 ) = do
|
|
let newindex = i + 4
|
|
let newstate = equal (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
|
|
operation ((drop newindex newstate)) (newstate) newindex base input output
|
|
| (last (digits op) == 9 ) = do
|
|
let newindex = i + 2
|
|
let fullop = (fillup (revertdigs op) 3)
|
|
let newbase = base + (getValue (fullop!!2) (xs!!0) base state)
|
|
(operation ((drop newindex state)) (state) newindex newbase input output)
|
|
|
|
add :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
|
|
add (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
|
|
Main.insert state sum (getIndex m3 p3 base)
|
|
where
|
|
sum = (getValue m1 p1 base state) + (getValue m2 p2 base state)
|
|
|
|
mult :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
|
|
mult (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
|
|
Main.insert state sum (getIndex m3 p3 base)
|
|
where
|
|
sum = (getValue m1 p1 base state) * (getValue m2 p2 base state)
|
|
|
|
put :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
|
|
put(op1:op2:m1:_) p1 input base state =
|
|
Main.insert state input (getIndex m1 p1 base)
|
|
|
|
|
|
out :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int]
|
|
out (op1:op2:m1:_) output p1 base state =
|
|
output ++ [(getValue m1 p1 base state)]
|
|
|
|
jumpif :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
|
|
jumpif (op1:op2:m1:m2:_) p1 p2 index base state
|
|
| (getValue m1 p1 base state) /= 0 = getValue m2 p2 base state
|
|
| otherwise = index + 3
|
|
|
|
jumpifnot :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
|
|
jumpifnot (op1:op2:m1:m2:_) p1 p2 index base state
|
|
| (getValue m1 p1 base state) == 0 = getValue m2 p2 base state
|
|
| otherwise = index + 3
|
|
|
|
lessthan :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
|
|
lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
|
|
| (getValue m1 p1 base state) < (getValue m2 p2 base state) =
|
|
Main.insert state 1 (getIndex m3 p3 base)
|
|
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
|
|
|
|
equal :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
|
|
equal (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
|
|
| (getValue m1 p1 base state ) == (getValue m2 p2 base state ) =
|
|
Main.insert state 1 (getIndex m3 p3 base)
|
|
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
|
|
|
|
|
|
insert :: [Int] -> Int -> Int -> [Int]
|
|
insert xs value index
|
|
| index < length xs = do
|
|
let split = splitAt index xs
|
|
(fst split)++ [value] ++ (drop 1 (snd split))
|
|
| otherwise = do
|
|
let longState = xs ++ (replicate (index - length xs) 0)
|
|
let split = splitAt index longState
|
|
(fst split)++ [value] ++ (drop 1 (snd split))
|
|
|
|
read :: [Int] -> Int -> Int
|
|
read xs index
|
|
| index < length xs = xs!!index
|
|
| otherwise = 0
|
|
|
|
digits :: Int -> [Int]
|
|
digits = map Char.digitToInt . show
|
|
|
|
revertdigs :: Int -> [Int]
|
|
revertdigs 0 = []
|
|
revertdigs x = x `mod` 10 : revertdigs (x `div` 10)
|
|
|
|
fillup :: [Int] -> Int -> [Int]
|
|
fillup array x = array ++ (replicate (x - (length array)) 0)
|
|
|
|
getValue :: Int -> Int -> Int -> [Int] -> Int
|
|
getValue 0 p base array = Main.read array p
|
|
getValue 1 p base array = p
|
|
getValue 2 p base array = Main.read array (base + p)
|
|
|
|
getIndex :: Int -> Int -> Int -> Int
|
|
getIndex m p base
|
|
| m == 0 = p
|
|
| m == 2 = p + base
|