193 lines
7.7 KiB
Haskell
193 lines
7.7 KiB
Haskell
import Data.List.Split
|
|
import Data.Char as Char
|
|
import Data.List as List
|
|
import qualified Data.Map.Strict as M
|
|
import Linear.V2
|
|
import Control.Monad
|
|
|
|
main = do
|
|
software <- getList <$> getContents
|
|
let arcade = Amplifier software 0 0 [] []
|
|
let arcadeStep1 = step arcade []
|
|
let step1Result = parseOutput M.empty (output arcadeStep1)
|
|
let blocks =length $ M.filter(==2) step1Result
|
|
let result = runGame arcade M.empty
|
|
--let gameMap = createMap result [0..23] []
|
|
let score = M.filterWithKey(\(V2 a b) _ -> a == -1 ) result
|
|
--mapM putStrLn( map (map getSymbol) gameMap)
|
|
--putStrLn(show score)
|
|
putStrLn(show result)
|
|
putStrLn "Finished"
|
|
|
|
data Amplifier = Amplifier{ state :: [Int]
|
|
,index :: Int
|
|
,base :: Int
|
|
,input :: [Int]
|
|
,output :: [Int]
|
|
} deriving Show
|
|
|
|
runGame :: Amplifier -> M.Map (V2 Int) Int -> M.Map (V2 Int) Int
|
|
runGame arcade gameM= do
|
|
let newArcade = step arcade [0]
|
|
let tiles = ((parseOutput M.empty (output newArcade)))
|
|
let newGameM = M.union tiles gameM
|
|
let blocks = length $ M.filter(== 2) newGameM
|
|
if blocks == 0
|
|
then tiles
|
|
else runGame newArcade newGameM
|
|
|
|
parseOutput :: M.Map (V2 Int) Int -> [Int] -> M.Map (V2 Int) Int
|
|
parseOutput tiles (x:y:c:xs)
|
|
| length xs == 0 = M.insert (V2 x y) c tiles
|
|
| length xs > 0 = parseOutput newtiles xs
|
|
where newtiles = M.insert (V2 x y) c tiles
|
|
|
|
createMap :: M.Map (V2 Int) Int -> [Int] -> [[Int]] -> [[Int]]
|
|
createMap points (y:ys) output
|
|
|length ys > 0 = do
|
|
let fPoints = M.filterWithKey(\(V2 a b) _ -> b ==y ) points
|
|
let row = M.foldlWithKey createRow [] fPoints
|
|
let newoutput = output ++ [(row)]
|
|
createMap points ys newoutput
|
|
|otherwise = output
|
|
|
|
createRow :: [Int] -> V2 Int -> Int -> [Int]
|
|
createRow row (V2 a b) c = Main.insert row c a
|
|
|
|
getSymbol :: Int -> Char
|
|
getSymbol 0 = ' '
|
|
getSymbol 1 = '|'
|
|
getSymbol 2 = '#'
|
|
getSymbol 3 = '='
|
|
getSymbol 4 = '*'
|
|
|
|
getList :: String -> [Int]
|
|
getList = map Prelude.read . splitOn ","
|
|
|
|
step :: Amplifier -> [Int] -> Amplifier
|
|
step amp input = operation (drop (index amp) (state amp)) (state amp) (index amp) (base amp) input []
|
|
|
|
operation :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int] -> Amplifier
|
|
operation (99:_) state i base input output =
|
|
Amplifier state i base input output
|
|
operation (op:xs) state i base input output
|
|
| last (digits op) == 1 = do
|
|
let newindex = i + 4
|
|
let newstate = add (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
|
|
operation ((drop newindex newstate)) (newstate) newindex base input output
|
|
| last (digits op) == 2 = do
|
|
let newindex = i + 4
|
|
let newstate = mult (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
|
|
operation ((drop newindex newstate)) (newstate) newindex base input output
|
|
| last (digits op) == 3 = do
|
|
if (length input) == 0
|
|
then (Amplifier state i base input output)
|
|
else do
|
|
let newindex = i + 2
|
|
let newstate = put (fillup (revertdigs op) 3) (xs!!0) (head input) base state
|
|
let newinput = drop 1 input
|
|
operation (drop newindex newstate) (newstate) newindex base newinput output
|
|
| last (digits op) == 4 = do
|
|
let newindex = i + 2
|
|
let newoutput = out (fillup (revertdigs op) 3) output (xs!!0) base state
|
|
let newinput = drop 1 input
|
|
operation ((drop newindex state)) (state) newindex base input (newoutput)
|
|
| (last (digits op) == 5 ) = do
|
|
let newindex = jumpif (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
|
|
operation ((drop newindex state)) (state) newindex base input output
|
|
| (last (digits op) == 6 ) = do
|
|
let newindex = jumpifnot (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
|
|
operation ((drop newindex state)) (state) newindex base input output
|
|
| (last (digits op) == 7 ) = do
|
|
let newindex = i + 4
|
|
let newstate = lessthan (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
|
|
operation ((drop newindex newstate)) (newstate) newindex base input output
|
|
| (last (digits op) == 8 ) = do
|
|
let newindex = i + 4
|
|
let newstate = equal (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
|
|
operation ((drop newindex newstate)) (newstate) newindex base input output
|
|
| (last (digits op) == 9 ) = do
|
|
let newindex = i + 2
|
|
let fullop = (fillup (revertdigs op) 3)
|
|
let newbase = base + (getValue (fullop!!2) (xs!!0) base state)
|
|
(operation ((drop newindex state)) (state) newindex newbase input output)
|
|
|
|
add :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
|
|
add (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
|
|
Main.insert state sum (getIndex m3 p3 base)
|
|
where
|
|
sum = (getValue m1 p1 base state) + (getValue m2 p2 base state)
|
|
|
|
mult :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
|
|
mult (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
|
|
Main.insert state sum (getIndex m3 p3 base)
|
|
where
|
|
sum = (getValue m1 p1 base state) * (getValue m2 p2 base state)
|
|
|
|
put :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
|
|
put(op1:op2:m1:_) p1 input base state =
|
|
Main.insert state input (getIndex m1 p1 base)
|
|
|
|
|
|
out :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int]
|
|
out (op1:op2:m1:_) output p1 base state =
|
|
output ++ [(getValue m1 p1 base state)]
|
|
|
|
jumpif :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
|
|
jumpif (op1:op2:m1:m2:_) p1 p2 index base state
|
|
| (getValue m1 p1 base state) /= 0 = getValue m2 p2 base state
|
|
| otherwise = index + 3
|
|
|
|
jumpifnot :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
|
|
jumpifnot (op1:op2:m1:m2:_) p1 p2 index base state
|
|
| (getValue m1 p1 base state) == 0 = getValue m2 p2 base state
|
|
| otherwise = index + 3
|
|
|
|
lessthan :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
|
|
lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
|
|
| (getValue m1 p1 base state) < (getValue m2 p2 base state) =
|
|
Main.insert state 1 (getIndex m3 p3 base)
|
|
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
|
|
|
|
equal :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
|
|
equal (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
|
|
| (getValue m1 p1 base state ) == (getValue m2 p2 base state ) =
|
|
Main.insert state 1 (getIndex m3 p3 base)
|
|
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
|
|
|
|
|
|
insert :: [Int] -> Int -> Int -> [Int]
|
|
insert xs value index
|
|
| index < length xs = do
|
|
let split = splitAt index xs
|
|
(fst split)++ [value] ++ (drop 1 (snd split))
|
|
| otherwise = do
|
|
let longState = xs ++ (replicate (index - length xs) 0)
|
|
let split = splitAt index longState
|
|
(fst split)++ [value] ++ (drop 1 (snd split))
|
|
|
|
read :: [Int] -> Int -> Int
|
|
read xs index
|
|
| index < length xs = xs!!index
|
|
| otherwise = 0
|
|
|
|
digits :: Int -> [Int]
|
|
digits = map Char.digitToInt . show
|
|
|
|
revertdigs :: Int -> [Int]
|
|
revertdigs 0 = []
|
|
revertdigs x = x `mod` 10 : revertdigs (x `div` 10)
|
|
|
|
fillup :: [Int] -> Int -> [Int]
|
|
fillup array x = array ++ (replicate (x - (length array)) 0)
|
|
|
|
getValue :: Int -> Int -> Int -> [Int] -> Int
|
|
getValue 0 p base array = Main.read array p
|
|
getValue 1 p base array = p
|
|
getValue 2 p base array = Main.read array (base + p)
|
|
|
|
getIndex :: Int -> Int -> Int -> Int
|
|
getIndex m p base
|
|
| m == 0 = p
|
|
| m == 2 = p + base
|