AoC2019/day15.hs
2019-12-15 17:15:19 +01:00

232 lines
9.6 KiB
Haskell

import Data.List.Split
import Data.Char as Char
import Data.List as List
import Data.Either as Either
import Debug.Trace as Trace
main = do
software <- getList <$> getContents
let brain = Amplifier software 0 0 [] [0]
let robot = Robot brain [] (0,0) 1
let resultRobots = (runRobot robot )
let winRobots = filter(\(Robot br pts pos dir) -> elem 2 (map(\(p,c) -> c) pts))resultRobots
let winRobotsLength = map(\(Robot br pts pos dir) -> length (filter(\(p,c) -> c == 1)pts))winRobots
let winRobot = (map(\(Robot br pts pos dir) -> Robot br [] pos 1) winRobots) !! 0
let part2Robots = (runRobot winRobot)
let part2Length = map(\(Robot br pts pos dir) -> length (filter(\(p,c) -> c == 1)pts))part2Robots
let endPoints = foldl (++) [] (map(\(Robot br pts pos dir) -> pts) resultRobots)
let yMin = List.minimum (map(\((x,y),c) -> y) endPoints)
let yMax = List.maximum (map(\((x,y),c) -> y) endPoints)
let posEndPoints = map(\((a,b),c)-> ((a+30,b),c)) endPoints
let ship = createMap posEndPoints (reverse [yMin-1..yMax]) []
mapM putStrLn(map show ship)
putStrLn(show $ length endPoints)
putStrLn(show winRobotsLength)
putStrLn(show $ List.maximum( part2Length))
data Amplifier = Amplifier{ state :: [Int]
,index :: Int
,base :: Int
,input :: [Int]
,output :: [Int]
} deriving Show
data Robot = Robot{ brain:: Amplifier
,points:: [((Int,Int),Int)]
,position:: (Int,Int)
,direction :: Int
} deriving Show
getBrain :: Robot -> Amplifier
getBrain (Robot brain points poisition direction) = brain
createMap ::[((Int,Int),Int)]-> [Int] -> [[Int]] -> [[Int]]
createMap points (y:ys) output
|length ys > 0 = do
let fPoints = filter(\((a,b),c) -> b ==y ) points
let row = foldl createRow [] fPoints
let newoutput = output ++ [(row)]
createMap points ys newoutput
|otherwise = output
createRow :: [Int] -> ((Int,Int),Int) -> [Int]
createRow row ((a,b),c) = Main.insert row c a
runRobot :: Robot -> [Robot]
runRobot robot
| (length move) == 0 = [robot]
| (length move) == 1 = do
let newRobot = stepRobot robot $ move!!0
runRobot newRobot
| otherwise = do
let newRobots = map(\mv -> stepRobot robot mv) move
foldl (++) [] $ map(\robot -> runRobot robot) newRobots
where move = getNextMove robot
stepRobot :: Robot -> Int -> Robot
stepRobot (Robot brain points position direction) newDirection = do
let newBrain = step brain [newDirection]
let statusResponse = head(output newBrain)
let newPos = move position newDirection
let newPoints = (points) ++ [(newPos,statusResponse)]
if statusResponse == 0 || statusResponse == 2
then Robot newBrain newPoints position newDirection
else Robot newBrain newPoints newPos newDirection
move :: (Int,Int) -> Int -> (Int,Int)
move (x,y) direction
| direction == 1 = (x,y+1)
| direction == 4 = (x+1,y)
| direction == 2 = (x,y-1)
| direction == 3 = (x-1,y)
getNextMove :: Robot -> [Int]
getNextMove (Robot brain points position direction)
|length points > 0 && (snd $ last points) == 2 = []
|otherwise = do
filterMoves (Robot brain points position direction) [1,2,3,4]
filterMoves :: Robot -> [Int] -> [Int]
filterMoves robot moves = filter(\x -> checkVisit robot x && checkWall robot x) moves
checkVisit :: Robot -> Int -> Bool
checkVisit (Robot brain points position direction) mv = do
let newPos = move position mv
let visits = map(\(pos,c) -> pos) points
notElem newPos visits
checkWall :: Robot -> Int -> Bool
checkWall (Robot brain points position direction) mv = do
let mvResult = head $ output (step brain [mv])
mvResult /= 0
getList :: String -> [Int]
getList = map Prelude.read . splitOn ","
step :: Amplifier -> [Int] -> Amplifier
step amp input = operation (drop (index amp) (state amp)) (state amp) (index amp) (base amp) input []
operation :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int] -> Amplifier
operation (99:_) state i base input output =
Amplifier state i base input []
operation (op:xs) state i base input output
| last (digits op) == 1 = do
let newindex = i + 4
let newstate = add (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| last (digits op) == 2 = do
let newindex = i + 4
let newstate = mult (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| last (digits op) == 3 = do
if (length input) == 0
then (Amplifier state i base input output)
else do
let newindex = i + 2
let newstate = put (fillup (revertdigs op) 3) (xs!!0) (head input) base state
let newinput = drop 1 input
operation (drop newindex newstate) (newstate) newindex base newinput output
| last (digits op) == 4 = do
let newindex = i + 2
let newoutput = out (fillup (revertdigs op) 3) output (xs!!0) base state
let newinput = drop 1 input
operation ((drop newindex state)) (state) newindex base input (newoutput)
| (last (digits op) == 5 ) = do
let newindex = jumpif (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
operation ((drop newindex state)) (state) newindex base input output
| (last (digits op) == 6 ) = do
let newindex = jumpifnot (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
operation ((drop newindex state)) (state) newindex base input output
| (last (digits op) == 7 ) = do
let newindex = i + 4
let newstate = lessthan (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| (last (digits op) == 8 ) = do
let newindex = i + 4
let newstate = equal (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| (last (digits op) == 9 ) = do
let newindex = i + 2
let fullop = (fillup (revertdigs op) 3)
let newbase = base + (getValue (fullop!!2) (xs!!0) base state)
(operation ((drop newindex state)) (state) newindex newbase input output)
add :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
add (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
Main.insert state sum (getIndex m3 p3 base)
where
sum = (getValue m1 p1 base state) + (getValue m2 p2 base state)
mult :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
mult (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
Main.insert state sum (getIndex m3 p3 base)
where
sum = (getValue m1 p1 base state) * (getValue m2 p2 base state)
put :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
put(op1:op2:m1:_) p1 input base state =
Main.insert state input (getIndex m1 p1 base)
out :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int]
out (op1:op2:m1:_) output p1 base state =
output ++ [(getValue m1 p1 base state)]
jumpif :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
jumpif (op1:op2:m1:m2:_) p1 p2 index base state
| (getValue m1 p1 base state) /= 0 = getValue m2 p2 base state
| otherwise = index + 3
jumpifnot :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
jumpifnot (op1:op2:m1:m2:_) p1 p2 index base state
| (getValue m1 p1 base state) == 0 = getValue m2 p2 base state
| otherwise = index + 3
lessthan :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
| (getValue m1 p1 base state) < (getValue m2 p2 base state) =
Main.insert state 1 (getIndex m3 p3 base)
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
equal :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
equal (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
| (getValue m1 p1 base state ) == (getValue m2 p2 base state ) =
Main.insert state 1 (getIndex m3 p3 base)
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
insert :: [Int] -> Int -> Int -> [Int]
insert xs value index
| index < length xs = do
let split = splitAt index xs
(fst split)++ [value] ++ (drop 1 (snd split))
| otherwise = do
let longState = xs ++ (replicate (index - length xs) 0)
let split = splitAt index longState
(fst split)++ [value] ++ (drop 1 (snd split))
read :: [Int] -> Int -> Int
read xs index
| index < length xs = xs!!index
| otherwise = 0
digits :: Int -> [Int]
digits = map Char.digitToInt . show
revertdigs :: Int -> [Int]
revertdigs 0 = []
revertdigs x = x `mod` 10 : revertdigs (x `div` 10)
fillup :: [Int] -> Int -> [Int]
fillup array x = array ++ (replicate (x - (length array)) 0)
getValue :: Int -> Int -> Int -> [Int] -> Int
getValue 0 p base array = Main.read array p
getValue 1 p base array = p
getValue 2 p base array = Main.read array (base + p)
getIndex :: Int -> Int -> Int -> Int
getIndex m p base
| m == 0 = p
| m == 2 = p + base