AoC2019/day7.hs
2019-12-08 00:44:42 +01:00

163 lines
6.6 KiB
Haskell

import Data.List.Split
import Data.Char as Char
import Data.List as List
import Data.Either as Either
main = do
software <- getList <$> getContents
let combs = getComb [5,6,7,8,9]
--mapM putStrLn(map show combs)
putStrLn(show $ List.maximum ( map (\x-> part2 ( prepareAmps x software) 0 ) combs ))
-- let output = calcthruster software [4,3,2,1,0]
data Amplifier = Amplifier{ state :: [Int]
,index :: Int
,input :: [Int]
,output :: [Int] } deriving Show
getList :: String -> [Int]
getList = map read . splitOn ","
getComb :: [Int] -> [[Int]]
getComb array = filter ((5==).length.(List.nub)) $ mapM (const array) [1..5]
prepareAmps :: [Int] -> [Int] -> [Amplifier]
prepareAmps (p1:p2:p3:p4:p5:_) software = do
let a = step (Amplifier software 0 [] []) [p1]
let b = step (Amplifier software 0 [] []) [p2]
let c = step (Amplifier software 0 [] []) [p3]
let d = step (Amplifier software 0 [] []) [p4]
let e = step (Amplifier software 0 [] [0]) [p5]
let e2 = Amplifier (state e) (index e) (input e) [0]
[a,b,c,d,e2]
part2 :: [Amplifier] -> Int -> Int
part2 amps lastOuput = do
let ampA = link (amps!!4) (amps!!0)
let ampB = link (ampA) (amps!!1)
let ampC = link (ampB) (amps!!2)
let ampD = link (ampC) (amps!!3)
let ampE = link (ampD) (amps!!4)
if index ampE == -1
then lastOuput
else part2 ([ampA,ampB,ampC,ampD,ampE]) (head(output ampE))
link :: Amplifier -> Amplifier -> Amplifier
link left calc
| null (output left) = Amplifier (state calc) (-1) (input calc) (output calc)
| index left == -1 = Amplifier (state calc) (-1) (input calc) (output calc)
| otherwise = step calc ([last $ output left])
step :: Amplifier -> [Int] -> Amplifier
step amp input = operation (drop (index amp) (state amp)) (state amp) (index amp) input []
calcthrusters :: [Int] -> [Int] -> Int -> Int
calcthrusters software (p1:p2:p3:p4:p5:_) start = do
let outputA = operation software software 0 [p1, start] []
let outputB = operation software software 0 [p2, last $ output outputA] []
let outputC = operation software software 0 [p3, last $ output outputB] []
let outputD = operation software software 0 [p4, last $ output outputC] []
let outputE = operation software software 0 [p5, last $ output outputD] []
last $ output outputE
operation :: [Int] -> [Int] -> Int -> [Int] -> [Int] -> Amplifier
operation (99:_) state i input output =
Amplifier state i input output
operation (op:xs) state i input output
| last (digits op) == 1 = do
let newindex = i + 4
let newstate = add (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) state
operation ((drop newindex newstate)) (newstate) newindex input output
| last (digits op) == 2 = do
let newindex = i + 4
let newstate = mult (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) state
operation ((drop newindex newstate)) (newstate) newindex input output
| last (digits op) == 3 = do
if (length input) == 0
then (Amplifier state i input output)
else do
let newindex = i + 2
let newstate = put (fillup (revertdigs op) 3) (xs!!0) (head input) state
let newinput = drop 1 input
operation (drop newindex newstate) (newstate) newindex newinput output
| last (digits op) == 4 = do
let newindex = i + 2
let newoutput = out (fillup (revertdigs op) 3) output (xs!!0) state
let newinput = drop 1 input
operation ((drop newindex state)) (state) newindex input (newoutput)
| (last (digits op) == 5 ) = do
let newindex = jumpif (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i state
operation ((drop newindex state)) (state) newindex input output
| (last (digits op) == 6 ) = do
let newindex = jumpifnot (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i state
operation ((drop newindex state)) (state) newindex input output
| (last (digits op) == 7 ) = do
let newindex = i + 4
let newstate = lessthan (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) state
operation ((drop newindex newstate)) (newstate) newindex input output
| (last (digits op) == 8 ) = do
let newindex = i + 4
let newstate = equal (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) state
operation ((drop newindex newstate)) (newstate) newindex input output
add :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
add (op1:op2:m1:m2:m3:_) p1 p2 p3 state =
Main.insert state sum p3
where
sum = (getValue m1 p1 state) + (getValue m2 p2 state)
mult :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
mult (op1:op2:m1:m2:m3:_) p1 p2 p3 state =
Main.insert state sum p3
where
sum = (getValue m1 p1 state) * (getValue m2 p2 state)
put :: [Int] -> Int -> Int -> [Int] -> [Int]
put(op1:op2:m1:_) p1 input state =
Main.insert state input p1
out :: [Int] -> [Int] -> Int -> [Int] -> [Int]
out (op1:op2:m1:_) output p1 state =
output ++ [(getValue m1 p1 state)]
jumpif :: [Int] -> Int -> Int -> Int -> [Int] -> Int
jumpif (op1:op2:m1:m2:_) p1 p2 index state
| (getValue m1 p1 state) /= 0 = getValue m2 p2 state
| otherwise = index + 3
jumpifnot :: [Int] -> Int -> Int -> Int -> [Int] -> Int
jumpifnot (op1:op2:m1:m2:_) p1 p2 index state
| (getValue m1 p1 state) == 0 = getValue m2 p2 state
| otherwise = index + 3
lessthan :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 state
| (getValue m1 p1 state) < (getValue m2 p2 state) = Main.insert state 1 p3
| otherwise = Main.insert state 0 p3
equal :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
equal (op1:op2:m1:m2:m3:_) p1 p2 p3 state
| (getValue m1 p1 state) == (getValue m2 p2 state) = Main.insert state 1 p3
| otherwise = Main.insert state 0 p3
insert :: [Int] -> Int -> Int -> [Int]
insert xs value index = do
let split = splitAt index xs
(fst split)++ [value] ++ (drop 1 (snd split))
digits :: Int -> [Int]
digits = map Char.digitToInt . show
revertdigs :: Int -> [Int]
revertdigs 0 = []
revertdigs x = x `mod` 10 : revertdigs (x `div` 10)
fillup :: [Int] -> Int -> [Int]
fillup array x = array ++ (replicate (x - (length array)) 0)
getValue :: Int -> Int -> [Int] -> Int
getValue 0 index array = array !! index
getValue 1 index array = index