advent-of-code/2021/src/bin/day08.rs
2021-12-08 20:10:16 +01:00

128 lines
4.8 KiB
Rust

#![feature(array_from_fn)]
#![feature(array_zip)]
#![feature(test)]
extern crate test;
use aoc2021::common::*;
use itertools::Itertools;
use std::array;
const DAY: usize = 8;
type Parsed<'a> = Vec<([SSD; 10], [SSD; 4])>;
const VALID_DISPLAYS: [SSD; 10] = [119, 36, 93, 109, 46, 107, 123, 37, 127, 111];
type SSD = u32;
struct Mapping([SSD; 7]);
impl Mapping {
fn translate(&self, i: SSD) -> SSD {
1 << self.0[i as usize]
}
}
fn parse(s: &str) -> SSD {
['g', 'f', 'e', 'd', 'c', 'b', 'a'].iter().map(|&c| s.contains(c)).fold(0, |acc, b| (acc | (b as SSD)) << 1) >> 1
}
fn bit_at(x: SSD, n: SSD) -> bool {
(x >> n) & 1 != 0
}
fn difference(lhs: SSD, rhs: SSD) -> SSD {
lhs & !rhs
}
fn parse_input(raw: &str) -> Parsed {
raw.lines()
.map(|l| l.split_once(" | ").unwrap())
.map(|(input, output)| {
let mut input = input.split(' ').map_into();
let mut output = output.split(' ').map_into();
(array::from_fn(|_| parse(input.next().unwrap())), array::from_fn(|_| parse(output.next().unwrap())))
})
.collect()
}
fn part1<'a>(parsed: &Parsed<'a>) -> usize {
parsed.iter().flat_map(|(_, output)| output).filter(|&&input| [2, 3, 4, 7].contains(&input.count_ones())).count()
}
fn part2<'a>(parsed: &Parsed<'a>) -> usize {
parsed
.iter()
.map(|(input, raw_output)| {
let [&one, &four, &seven] = [2, 4, 3].map(|n| input.iter().find(|s| s.count_ones() == n).unwrap());
// We know the position of a for sure because it’s the only difference between 7 and 1
let a = (0..7).position(|n| bit_at(difference(seven, one), n)).unwrap();
// And c and f are these two (both used in 1).
// Contrary to the name, these two values are both c_or_f,
// so we know c and f are these two, but we don’t know which is which.
let (c, f) = (0..7).positions(|n| bit_at(one, n)).next_tuple().unwrap();
// 4 uses b, c, d, f, but we already know c and f from 1, so this leaves b and d.
let (b, d) = (0..7).positions(|n| bit_at(difference(four, one), n)).next_tuple().unwrap();
// Now e and g have to be in the remaining two positions.
let (e, g) = (0..7).filter(|n| ![a, b, c, d, f].contains(n)).next_tuple().unwrap();
// Now there are 8 possible combinations from multiplying the 3 x_or_y we constructed above.
// This is a manual implementation of itertools::iproduct specialized for 3 small
// arrays because it’s much faster this way.
let mapping = [[c, f], [f, c]]
.into_iter()
.flat_map(|[c, f]| [[c, f, b, d], [c, f, d, b]])
.flat_map(|[c, f, b, d]| [[c, f, b, d, e, g], [c, f, b, d, g, e]])
.map(|[c, f, b, d, e, g]| {
let mut m = [0; 7];
let mut cur = 0;
for i in [a, b, c, d, e, f, g] {
m[i] = cur;
cur += 1;
}
Mapping(m)
})
.find(|m| input.iter().all(|&i| VALID_DISPLAYS.contains(&(0..7).map(|n| (bit_at(i, n) as SSD) * m.translate(n)).sum())))
.unwrap();
raw_output
.iter()
.map(|&i| (0..7).map(|n| (bit_at(i, n) as SSD) * mapping.translate(n)).sum())
.map(|ssd: SSD| VALID_DISPLAYS.iter().position(|d| &ssd == d).unwrap())
.fold(0, |acc, n| (acc + n) * 10)
/ 10
})
.sum()
}
fn main() {
let raw = read_file(DAY);
let input = parse_input(&raw);
println!("Part 1: {}", part1(&input));
println!("Part 2: {}", part2(&input));
}
#[cfg(test)]
mod tests {
use super::*;
use aoc2021::*;
const TEST_INPUT: &str = "be cfbegad cbdgef fgaecd cgeb fdcge agebfd fecdb fabcd edb | fdgacbe cefdb cefbgd gcbe
edbfga begcd cbg gc gcadebf fbgde acbgfd abcde gfcbed gfec | fcgedb cgb dgebacf gc
fgaebd cg bdaec gdafb agbcfd gdcbef bgcad gfac gcb cdgabef | cg cg fdcagb cbg
fbegcd cbd adcefb dageb afcb bc aefdc ecdab fgdeca fcdbega | efabcd cedba gadfec cb
aecbfdg fbg gf bafeg dbefa fcge gcbea fcaegb dgceab fcbdga | gecf egdcabf bgf bfgea
fgeab ca afcebg bdacfeg cfaedg gcfdb baec bfadeg bafgc acf | gebdcfa ecba ca fadegcb
dbcfg fgd bdegcaf fgec aegbdf ecdfab fbedc dacgb gdcebf gf | cefg dcbef fcge gbcadfe
bdfegc cbegaf gecbf dfcage bdacg ed bedf ced adcbefg gebcd | ed bcgafe cdgba cbgef
egadfb cdbfeg cegd fecab cgb gbdefca cg fgcdab egfdb bfceg | gbdfcae bgc cg cgb
gcafb gcf dcaebfg ecagb gf abcdeg gaef cafbge fdbac fegbdc | fgae cfgab fg bagce";
#[test]
fn test_parse() {
assert_eq!(parse("cgeb"), 86);
}
test!(part1() == 26);
test!(part2() == 61229);
bench!(part1() == 239);
bench!(part2() == 946346);
bench_input!(Vec::len => 200);
}