You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

172 lines
6.9 KiB

import Data.List.Split
import Data.Char as Char
import Data.List as List
import Data.Either as Either
import Debug.Trace as Trace
main = do
software <- getList <$> getContents
let brain = Amplifier software 0 0 [] [0]
let mvRoutine = [65,44,66,44,65,44,67,44,66,44,65,44,67,44,66,44,65,44,67,10]
let mvFuncA = [76,44,49,50,44,76,44,49,50,44,76,44,54,44,76,44,54,10]
let mvFuncB = [82,44,56,44,82,44,52,44,76,44,49,50,10]
let mvFuncC = [76,44,49,50,44,76,44,54,44,82,44,49,50,44,82,44,56,10]
let videoStream = [110,10]
let input = concat [mvRoutine, mvFuncA, mvFuncB, mvFuncC, videoStream]
let dust = (output (step brain input))
putStrLn (show dust)
data Amplifier = Amplifier{ state :: [Int]
,index :: Int
,base :: Int
,input :: [Int]
,output :: [Int]
} deriving Show
data Robot = Robot{ brain:: Amplifier
,points:: [((Int,Int),Int)]
,position:: (Int,Int)
,direction :: Int
} deriving Show
getBrain :: Robot -> Amplifier
getBrain (Robot brain points poisition direction) = brain
getSymbol :: Int -> Char
getSymbol 35 = '#'
getSymbol 46 = '.'
getSymbol 60 = '<'
getSymbol 62 = '>'
getSymbol 94 = '^'
getSymbol 118 = 'v'
getSymbol x = '?'
getList :: String -> [Int]
getList = map Prelude.read . splitOn ","
step :: Amplifier -> [Int] -> Amplifier
step amp input = operation (drop (index amp) (state amp)) (state amp) (index amp) (base amp) input []
operation :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int] -> Amplifier
operation (99:_) state i base input output =
Amplifier state i base input output
operation (op:xs) state i base input output
| last (digits op) == 1 = do
let newindex = i + 4
let newstate = add (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| last (digits op) == 2 = do
let newindex = i + 4
let newstate = mult (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| last (digits op) == 3 = do
if (length input) == 0
then (Amplifier state i base input output)
else do
let newindex = i + 2
let newstate = put (fillup (revertdigs op) 3) (xs!!0) (head input) base state
let newinput = drop 1 input
operation (drop newindex newstate) (newstate) newindex base newinput output
| last (digits op) == 4 = do
let newindex = i + 2
let newoutput = out (fillup (revertdigs op) 3) output (xs!!0) base state
let newinput = drop 1 input
operation ((drop newindex state)) (state) newindex base input (newoutput)
| (last (digits op) == 5 ) = do
let newindex = jumpif (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
operation ((drop newindex state)) (state) newindex base input output
| (last (digits op) == 6 ) = do
let newindex = jumpifnot (fillup (revertdigs op) 4) (xs!!0) (xs!!1) i base state
operation ((drop newindex state)) (state) newindex base input output
| (last (digits op) == 7 ) = do
let newindex = i + 4
let newstate = lessthan (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| (last (digits op) == 8 ) = do
let newindex = i + 4
let newstate = equal (fillup (revertdigs op) 5) (xs!!0) (xs!!1) (xs!!2) base state
operation ((drop newindex newstate)) (newstate) newindex base input output
| (last (digits op) == 9 ) = do
let newindex = i + 2
let fullop = (fillup (revertdigs op) 3)
let newbase = base + (getValue (fullop!!2) (xs!!0) base state)
(operation ((drop newindex state)) (state) newindex newbase input output)
add :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
add (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
Main.insert state sum (getIndex m3 p3 base)
where
sum = (getValue m1 p1 base state) + (getValue m2 p2 base state)
mult :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
mult (op1:op2:m1:m2:m3:_) p1 p2 p3 base state =
Main.insert state sum (getIndex m3 p3 base)
where
sum = (getValue m1 p1 base state) * (getValue m2 p2 base state)
put :: [Int] -> Int -> Int -> Int -> [Int] -> [Int]
put(op1:op2:m1:_) p1 input base state =
Main.insert state input (getIndex m1 p1 base)
out :: [Int] -> [Int] -> Int -> Int -> [Int] -> [Int]
out (op1:op2:m1:_) output p1 base state =
output ++ [(getValue m1 p1 base state)]
jumpif :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
jumpif (op1:op2:m1:m2:_) p1 p2 index base state
| (getValue m1 p1 base state) /= 0 = getValue m2 p2 base state
| otherwise = index + 3
jumpifnot :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> Int
jumpifnot (op1:op2:m1:m2:_) p1 p2 index base state
| (getValue m1 p1 base state) == 0 = getValue m2 p2 base state
| otherwise = index + 3
lessthan :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
lessthan (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
| (getValue m1 p1 base state) < (getValue m2 p2 base state) =
Main.insert state 1 (getIndex m3 p3 base)
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
equal :: [Int] -> Int -> Int -> Int -> Int -> [Int] -> [Int]
equal (op1:op2:m1:m2:m3:_) p1 p2 p3 base state
| (getValue m1 p1 base state ) == (getValue m2 p2 base state ) =
Main.insert state 1 (getIndex m3 p3 base)
| otherwise = Main.insert state 0 (getIndex m3 p3 base)
insert :: [Int] -> Int -> Int -> [Int]
insert xs value index
| index < length xs = do
let split = splitAt index xs
(fst split)++ [value] ++ (drop 1 (snd split))
| otherwise = do
let longState = xs ++ (replicate (index - length xs) 0)
let split = splitAt index longState
(fst split)++ [value] ++ (drop 1 (snd split))
read :: [Int] -> Int -> Int
read xs index
| index < length xs = xs!!index
| otherwise = 0
digits :: Int -> [Int]
digits = map Char.digitToInt . show
revertdigs :: Int -> [Int]
revertdigs 0 = []
revertdigs x = x `mod` 10 : revertdigs (x `div` 10)
fillup :: [Int] -> Int -> [Int]
fillup array x = array ++ (replicate (x - (length array)) 0)
getValue :: Int -> Int -> Int -> [Int] -> Int
getValue 0 p base array = Main.read array p
getValue 1 p base array = p
getValue 2 p base array = Main.read array (base + p)
getIndex :: Int -> Int -> Int -> Int
getIndex m p base
| m == 0 = p
| m == 2 = p + base